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N.INTRODUCTION
This work is aimed at the understanding, description, and

prediction of magnetohydrodynamic phenomena exhibited under conditions

of extremely high interaction and large magnetic Reynolds number. The

plasmas which consistute the fluid medium in such flows may exhibit

nonideal thermodynamic- and kinetic behavior. The theoretical work at

rS~DB.8sea~ -under ONR ppo.t has two principal objectives: td the

elucidation of basic phenomena in strong interaction high magnetic

Reynolds number flows independently of specific experiments or machines;

and 44 the perfection of predictive theories to accurately describe and

model specific experiments aimed at magnetohydrodynamic power

production.

In what follows we present the general mathematical description

of magnetogasdynamic flows in the high magnetic Reynolds number regime.

We present several illustrative calculations of quasi-one-dimensional

transient effects in strong interaction flows. We-e two-

dimensional high Reynolds number electricity results, including the

realistic effects of nonuniform velocity and electrical conductivity

resulting from hypersonic boundary layers and from shock-induced

nonuniformities.



2. THE MATHEMATICAL DESCRIPTION OF MAGNETOGASDYNAMIC
FLOWS

;: " .i Fluid Conservation . L a w s

We may describe the fluid in terms of its mass density, p,

,j velocity U, and internal energy c. We describe the electromagnetic
effects in terms of the electric field E and magnetic field B. These
variables are considered to be general functions of space x and time t.
The conservation laws for mass, momentum, and energy are

+ (p) :o ()-8t

Ft (pu) + V. (pUU) = V.T+ J XB (2)

In the conservation laws, ir is the total pressure tensor and
q is the heat flux vector. This system of conservation laws is completed
in the limit of infinitely fast kinetics by the kinetic and caloric equations

of state

p p(p, 1) (4)

: E(p, T) (5)

where p is the isotropic part of the stress tensor VT and T is the

temperature. For a general fluid the state equations, Eqs. (4), (5) cannot be
explicitly given but are embedded in the general statistical mechanical
description of the equilibrium thermochemistry of the system.

2
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In the case of a perfect gas with particular gas constant R

and specific heat ratio y explicit formulae may be given:

p = pRT (6)

" E = (y-i) RT (7)

p -- p(Y-) E (8)

2.2 The Electromagnetic Contributions

The electrical equations (consisting of the Maxwell equations

and the generalized Ohm's law) govern the electric and magnetic fields

E,B and the conduction current density J. In the hydromagnetic limit

these are

Vx "= - B (9)
at

7 X B =0 (10)

?B = 0 (

where-JK is the thermal diffusion flux vector,

i KK

and is given by [I ]

a -e(1)T +e(2)vTT x()+e( 3 )(?Tex )x
L e e

N 7 ()V 17p ()v g+(3)(px~g(3

Li l)Vap Pa x -r + P a (V pXB) X] (13)

3



The 0(I!... and (1... are transport coefficients defined in

i ], Te is the electron temperature and the subscript a denotes a
plasma component.

The contributions to the momentum and energy of the system

by the electromagnetic field are contained within the Lorentz force,

" X B and the Lorentz power J E . The Lorentz force may be

represented in terms of the Maxwell stress tensor T as

T XB = T ' (14)

where the Maxwell stress tensor is defined as

T 0 BT (15)

Correspondingly the Lorentz power may be represented in terms of the

Poynting flux S and the electromagnetic energy density e

ae
- at (16)

The Poynting flux S is defined as

110 XB (17)

while the electromagnetic energy density is

e ^-I B2 /2 (18)em 10

Let us expand the Poynting flux in terms of J, B through the use of

the Ohm's law

7 =

We have

4



,= S = ( 0 X = ( J~)XB - 0~ (~X) XB- K
0 'g go

The term - X B is simply 7 ' . The term (U X E) X B is readily

shown to be

(U XB) XB = U (B B) - (B B)

which can be rearranged to

(U XB)XB = U-( -B/Z) -T(B 2 /2)

The Poynting flux is therefore represented as

S = e mU - U - T + r)7 T - KXB (19)

where Y7 (= ( 0o-) is the magnetic diffusivity. We note that the Poynting

flux can be decomposed into four constituent parts: (a) a purely convected

flux of electromagnetic energy carried by the motion of the medium

(e mU); (b) a power flow represented by work done per unit time by the

Maxwell stresses acting on the moving medium -U -T ; (c) a diffusive

flux of electromagnetic energy driven by gradients of the Maxwell stress

tensor (-.7. T); and (d) a power flow represented by work done per unit

time by the thermal diffusion flux (-IJ K X B).

The electric and magnetic fields and currents may be expressed

in terms of vecter potentials A and scalar potential 4 as

B =7 x A (20a)

a-(20b)

5
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2.3 Fluid-Electrical System

The mass, momentum, and energy equations for the general,

j [viscous, hydromagnetic system may now be expressed as

i+7 o (21)a8t

+ r j7 22)
Bt

8 e T 9 23
aH+ . =E . (U' . 7. (7V .V ) '+V.(nJXB (23)

In the above M = pU is the momentum density and r is the total fluid

and electromagnetic momentum flux

17 =pTU + PIT (24)

The total energy density is

2e p(E + U /2) + em (25)

and E is the total enthalpy flux vector

W=[(e +p) I- F] - U (26)

The fluid stress tensor ir has been decomposed into a pressure p and

viscous stress tensor -r where

l-

p Trace ((27)

and

-I + T (28)

We may define the electromagnetic pressure pm as the mean

normal compressive Maxwell stress:

6



Fm = " 1 Trace( ) (29)

Expressed in terms of the magnetic field intensity B, the pressure is

m / 1" 0 ) (30)

or expressed in terms of the electromagnetic energy density em

!

Pm= em (31)

The Maxwell stress tensor may be decomposed into a mag-

netic pressure pm and a Maxwell stress deviator from isotropy T* as

2' T - Pm 1  (32)

Equation (32) may be thought of as the defining equation for the Maxwell

stress deviators T . The mass, momentum, and energy equations may

now be rewritten in alternative form as

at M 0 (33)

M + -- 1 -- T + 7 •T(34)

ft

In the above, G is the total momentum flux with only the magnetic pressure

included as the magnetic contribution

G = pUU + (p + pm )  (36)

while H is the total enthalpy flux consisting of both fluid and electro-

magnetic pressure and energy contributions.

[e + (p + Pm U (37)

7



In terms of the total energy density e, the momentum density

M, and the electromagnetic energy density ems the state equations (6) -

[i (8) become

p = (y-1)[e - em -M2/ZP] (38)

T p/pR = C e-e - MZ/2 (39)

Let us now consider the transformation of the electrical

equations (9)-(12) into more useful forms. Combining Eqs. (9)-(12) we

obtain the governing equation for the magnetic induction B:

7x (Tx-) = -7 x (rI7 X -B) + V X - (40)at

We note that given the magnetic induction B(x ,t) governed by Eq. (40)

one immediately has specified the Maxwell stress tensor T and the

electromagnetic energy density em. Further, the current density J is

determined from B as

" = iN-i×

L V X

and the electric field E as

E = -U X B + 7 V X B -K

2.4 Viscous and Heat Conduction Effects

Let us now make some observations about the viscous stress

tensor -r and the heat flux vector q. The Ne.vier-Stokes moments of

the Boltzmann equation yield kinetic theory forms of these quantities:

7L = 2(VU) 0  (41)

qL = -XVT (42)

8
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In the above, g and X are the coefficients of viscosity and thermal
conductivity and (VU)0 is the symnmetrized, traceless velocity gradient

tensor:

(VU a SUi au, iJ Uk
i ~3 ax k  i

We denote the stress tensor and heat flux vector with a subscript L to
denote that these are laminar quantities. If, on the other hand, we
interpret the fluid variables p,U,,T,'" as turbulent mean quantities,
then T and j contain turbulent contributions due to the turbulent velocity
and enthalpy correlations. Hence, the complete stress and heat flux
fields for a turbulent hydromagnetic medium are

T pu U )+ TL

where U ,h are the turbulently fluctuating velocity and enthalpy and ()
denotes an ensemble average. A detailed higher order closure theory for
the turbulent contributions (pU'U) , (pUh) is given by Demetriades,
Argyropoulos, and Lackner [2]. The radiative heat flux is qR" Since

the optical depths in dense, explosion generated plasma are so smali,
the radiative heat flux is only important in layers near the plasma surface

of the order of the radiation free path.

2. 5 Nondimensional Forms

Let us consider the nondimensionalization of the fluid equations

(33) - (35) and the electrical equation (4 ). For this purpose let us
specify characteristic values of the variables as P0 ,U 0 , 0 ,p 0 ,T0 ,** as
well as magnetic field B We define a characteristic length L and
characteristic time t0 = L/U 0 . We indicate nondimensional variables

with~).

9



The fluid and electrical conservation laws then become

+ 0 (43)
- - ? o

at

at ee0

-sM .V . 2SVj X .XB (45)

aB

VX(UXx)=-R{ x(7XB)- Vx JK) (46)
at

B =V xA

at

In the form in which the Maxwell stress tensor is decomposed the left hand

sides of the momentum and energy equations take the forms

- +V G-S - -*

at at

- + -- - -T
Oe - - -. - -- 3e -.

at at

The nondimensional variables are defined as

t =U t/L V LV

u =Zr/tuo

P = P/Po

00

iO



p =;{i[Y y)M 2 ] j2}I+ S

E e/U-if RTI

em (B l)(B~/~o

BB0

A XI~(B0/L)

t /(u 0B 0L)

T4L =/iJB0 /L)

j JK/ (-U0BO0)

r , l -mf - S

.. 4 - ;

GH U + LCp + S mj
I~ -

where

x0  X(p09 TO), 40 =(p 0, TO), no n r(PO, TO)

The state equations (38), (30) in nondirnensiollal form are

it



= Y~i2[ S;r

It can be seen that the general viscous hydromagnetic equations

contain six fundamental nondimensional parameters. These are

M Mach nunmber tJ0 /('YP 0 /P0 )1

S Interaction parameter (B,/Z.^ )/(P 0)Ul)

R mMagnetic Reynolds number (U 0 L/rj0 )

R e Viscous Reynolds number P0 U 0 L/AL

PR Viscous Prandtl number (Cpg/o

We note that the Alfvin speed C A is defined as

C A = (BZ/^ Lop)

and the Alfve'n Mach number is MA U/CA Hence the interaction param-

eter S is also twice the reciprocal of the square of the Alfve~n Mach number.

For flows in the absence of viscous and diffusion effects

Rm 00, R e- co we obtain the inviscid hydromagnetic equations:

+=0 (47)
at

a ~ 1 
M - (48)

12



+H U T ] 0 (49)

atI. -- _ _
-V x (U x 0 = (50)

The jump equations across hydromagnetic shocks immediately follow

from Eqs. (47)-(50).

G - S , = 0 (52)

H - U T 0 (53)

{ x (& x )} 0 (54)

where { } denotes the difference in the quantity across the shock surface

and n is the normal to the shock surface.

Since the electrical conductivity achievable in nonideal plasma

is large but finite, the magnetic Reynolds numbers are not infinite but

perhaps vary in the range I S Rm -< z0.

In this range, the appropriate system is the inviscid, finite

conductivity hydromagnetic system:

+ . M 0 (55)
at

8M - 0

at

13
S j t ' "



S m 7(7T) (57)

V X (U XB) = -R m  X(r 7xB) (58)
at

or in the alternative form, the momentum and energy equations are

4+V. SVT7 (5 6a)at

- - " "- - - I ~~~

at ef+] 7  7 T) (56b)

2.6 ADvlied and Induced Fields

Let us separate the magnetic field B into an applied portion
B0 sustained by currents external to the plasma and plasma induced

portion B) which results from currents flowing within the plasma:

B -(o) + (i) (57)

The induction equation, Eq. (58), then becomes

~() i (o) -(oat Vx(U Xi -mRlVX(wVxB )-VX(nJ K)}

-RV X(iVxB )-B (58)
(o) .A

where 'B_ is denoted B (0)

at

14



3.0 QUASI-ONE-DIMENSIONAL TRANSIENT MAGNETOGASDYNAMICS
OF HYPERVELOCITY PULSED FLOWS

3.1 Plasma Flow Configuration

We now consider the behavior of shock generated magneto-

hydrodynamic interaction and low to high magnetic Reynolds numbers

according to a quasi-one-dimensional description. Such a flow consists

of a hot plasma "plasmoid" formed between a driven ionizing shock wave

and its following contact surface. The plasmoid is created by a sudden

release of energy in a driver section which is in contact with a test gas

in which the plasmoid propagates. Such a flow may be driven, for

example, by the use of focused chemical explosives. [], [2]

The conducting plasmoid enters a region in which an externally

imposed magnetic field B and electrodes coupled to an external circuit

exist (Fig. 3-L). The plasma conducts current to this external circuit and

is subject to Lorentz forces and Joule heating as it propagates through

the magnetic field. If the explosion drive is a chemical source, such a

plasmoid will be of the order of 5-20 cm in length in traversing a

magnetic field region of the order of 100 cm at velocities of the order of4 -1
to ms . The plasmoid may exist at pressures up to f k bar and

energies of 5 eV.

If op 0 , U are the characteristic electrical conductivity, mass

density and velocity within the plasmoid, the flow may be specified by an

interaction number i and magnetic Reynolds number rm (in addition to the

gasdynamic Mach number).

2
i r 0  rm U
PoU 005
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For an interaction region of length L, the nondimensional numbers are

defined as

. L
oidx Rr dx (59)
0 0 m

WhenR >> 1, the appropriate measure of the interaction is the

parameter S defined as

22
.S~ (B'/)/(t ) (60)

where the spatial average () is over the electrically conducting portion of

the region L. For a uniform plasmoid of length a, these numbers become
2!

I r 0 B 0 a/p 0 U 0 , Rm=TO0 i 0 U 0 a, S=I/R" M

Pulsed magnetohydrodynamic flows have been examined in the

case of low magnetic Reynolds number (Rm << i) and weak interaction

(I<) [3],[4].Because of the low interaction, these studies revealed simple

current flow through the plasmoid and weak magnetohydrodynamic

deceleration.

The transverse ionizing shock-wave which forms the front of

the plasmoid has been extensively studied in the limit of infinitely large

magnetic Reynolds number [5], [6]. In addition to the exposition of the

general Rankine-Hugoniot conditions for these shocks [5] it has also been

demonstrated that such shock waves can be reflected as well as transmitted

upon encounter with an externally imposed magnetic field. These studies

also showed that the electric field in front of the shock must be self-consistently

determined with the dynamical state behind the shock and the electrical

boundary conditions imposed upon the gas [6].

~17



In the present study, we examine the magnetohydrodynamics of

* the whole plasmoid in its encounter with, and transit through an externally

imposed magnetic field. We show that under conditions of strong inter-

action, hypervelocity plasmoids can possess a rich variety of magneto-

hydrodynamic phenomena including magnetically reflected shock waves,

embedded MHD discontinuities, and significant periods of transonic flow

within the plasmoid. In particular, we reveal the dynamics of reflected

and transmitted waves through the plasmoid in both the low and high

magnetic Reynolds number regime. We reveal the behavior of electro-

thermally unstable plasmoids. We show that, in general, the plasmoid

is not delimited by the region between the shock front and contact surface.

Instead, the plasmoid develops its own internal, evolving structure

governed by the mutual interaction of self-heating and self-induced fields.

Shock-generated hypervelocity flows of this kind are subject to

a variety of nonideal phenomena. These include wall interaction effects

(viscous losses, gas leakage, and ohmic voltage drops in boundary layers),

thermal radiation losses, and kinetic/ionization relaxation effects behind shock

waves. In the present study we ignore these effects and examine those phenomena

which arise specifically from the nagnetohydrodynamic interaction.

In Part 3.2 we present the quasi-one-dimensional version of

the system of equations discussed in Part 2. In Part 3.3 we examine

the dynamics of strong interaction plasmoids with an applied magnetic

field but at low magnetic Reynolds number. In Part 3.4 we similarly

consider strong interaction plasmoids but at large magnetic Reynolds

number. In Part 3.5 we illustrate the behavior of "transitional" plasmoids.

18
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These are flows in which the plasmoid enters the magnetic field at

relatively low values of interaction parameter and magnetic Reynolds

T number. As a result of self Joule heating, however, the plasmoid con-

ductance is elevated as it progresses through the field carrying it into

the strong interaction, high magnetic Reynolds number regime.

3.2 The One-Dimensional Description

We consider a quasi-one-dimensional description of the gas

moving over the spatial coordinate x in time t. If the equations of

Section 2 are averaged over the cross section of the duct, we obtain

the quasi-one-dimensional forms

aw a_
-"-w+- (61)

where W(xt) is the vector of mass, momentum, and total energy densities

j3 (x,t) - m (62)
e

In the above, the following definitions apply

m = pU

e = p( +U 2 /2

where all quantities are to be interpreted as averages over the duct

cross section. The magnetic field Bi is that induced by the plasma

currents where B0 is the applied field:

B BO +B i

19 JN



The convected fluxes of mass, momentum, and energy are contained in theI
vector F while contains the Lorentz force and power associated with

the magnetic field and the Joule dissipation. These are expressed in

terms of current density T and magnetic field B:

F -- (j + p + Bi/2 o -- ("B (63)

In this illustration study we assume that the kinetic effects are confined

to the relaxation layer at the shock, and further, that the relaxation

layer is thin compared to the overall thickness of the plasmoid.

For the simple geometry (x,y,z) of Fig.3-i, the magnetic field

Bis given by B(0,0,B), the electric field by F = E(0,E,0), and the

cu:-rent by -= -(0,J,0). The description for the near fields J,B i of the

plasmoid is then given by Ohm's law and the Maxwell equation in the

MHD approximation:

J (E - B - UB 0 ) (64)

aB.
x -r(E - UB. - UB 0 ) (65)

where T (T0o) is the magnetic diffusivity.

External interaction conditions with an external circuit including

inductive coupling with the applied magnetic field coil are required to



complete the description of actual flow situations. Rather than include

such circuit detail in these illustrations we assume that the external

circuit is configured so that an electric field E E(0,E,0) is maintained

within the interelectrode region whose magnitude is uniform in space and

given by

E = K(UB)

where K is a "load" parameter (0 - K -- 1). For a passive external

circuit, the value K = 0 corresponds to a shorted external circuit; for

K = i the external circuit is open circuited.

The fluid variables p,p,T,o,U are nondimensionalized by the

values p0 ,P 0 , T0 ,ar0,U 0 characterizing the interior of the initial plasmoid

before encounter with the magnetic field. Nondimensional space and time

x,t are defined in terms of x, nondimensionalized by the plasmoid length

a, and t by a/U O. The nondimensional parameters governing the inter-

action are the Mach number M, the gas heat ratio y, either of the inter-

action parameters I or S, and the magnetic Reynolds number R

Boundary and Initial Conditions

In the limit of Rm - o, the system consisting of Eqs. 59, and

(62) is fully hyperbolic. For finite Rim, the system is mixed hyperbolic/

parabolic with embedded regions where resistive effects occur. The

boundary and initial conditions which specify the interaction problem for

an explosion generated plasmoid encounter with a magnetic field are as

follows. As an initial condition we take an idealized explosion driven
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flow in which the plasmoid of given breadth a occupies the hot zone

between contact surface and shock front [ 9 1 (Fig. 3-3). At time t = 0

" the shock front is located at the edge of the magnetic field. Over the

time scale for the dynamics of interest the shock front of the plasmoid

will run continuously into the quiescent driver gas while the backward

running rarefaction continuously runs into the explosive source. Hence

the boundary conditions for the fluid equations are those of specified

explosion and quiescent states at the boundaries x = +L1 , x = -L 2

respectively.

The boundary condition for the induced magnetic field B. fromIi
Eq. (61) is that of symmetry across the overall plasmoid so that at x=L,

x = -L 2 which lie outside the region of any current flow

B i(-L ,t) = -Bi(Llt)

The applied magnetic field B0 is uniform in both space and time.

Numerical Procedures

The solutions to the initial-value problems formulated above and

to be discussed in Section 3.3, 3.4, and 3.5 are computationally generated

with second order accurate explicit finite difference operators. The

hyperbolic system is treated with the MacCormack version of the Lax-

Wendroff-Richtmyer operator [101. For the space-time grid utilized,

comparisons were made with the analytically available solutions for the zero

and infinite Rm, zero interaction limits. At the extreme pressure ratios of

t05 between driver and driven gas for these explosion generated plasmoids,

the maximum variations between the computationally generated and analytical

solutions within the plasmoid (expressed as a fraction of the analytical solution)

are 0.025 in velocity, 0.04 in pressure, and 0.08 in temperature.
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Fig. 3-3. Initial condition for plasmoid, interaction for the pressure (a),
temperature (b), and velocity (c). Shock front of plasmoid of
given breadth a located at magnetic field edge at time t = 0
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3.3 Interaction at Low Magnetic Reynolds Number

I We now proceed to the first of several illustrations of the fore-

going description. We consider first the strong interaction of a plasmoid

Lo with the magnetic field but at low magnetic Reynolds number. In Fig. 3-2

the kinematics of this situation are shown. When the incident plasmoid

encounters the magnetic field, the leading shock front may be both trans-

mitted and reflected. In the case of reflected fronts, the rear (contact

surface) of the plasmoid subsequently interacts with the reflected shock

front. This colliding disturbance then radiates a fast and slow reflected

shock (d.-noted shock II) back through the plasmoid (which consists of

subsonic flow behind the reflected shock front) where it then collides with

the now strongly decelerated shock front.

For the illustration shown here, we select a plasmoid with Mach

number M=1.64, interaction parameters I=20, S=200, and Reynolds

number Rm = 0. 1, just before encountering the magnetic field. The full

conditions for the flow are given in Table I. We impose the condition

that the electrical conductivity is spatially uniform within the high tempera-

ture plasmoid (we consider electrical conductivity functions which are con-

sistently coupled to the gas thermodynamic state in Part 3.4). This uniform

conductivity distribution is achieved in the computations with the model

conductivity function

I 0 T/T 0 < 1/3

. { T/T 0  1/3
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TABLE I

Conditions for Interaction at Low Magnetic Reynolds Number

Tf T0 Quiescent driven gas temperature

p O Quiescent driven gas pressure

M = 1. 64y 1.

23I = 20

TOTo= 45 K = 0. 5
STD 9-3050

TABLE II

Conditions for Interaction at Hiugh Magnetic Reynolds Number

M =1. 64 1.5

pO/pOOI = 3 20
R m

TO/TO = 45 Kc=0.5

STD 9-3051

TABLE III

Conditions for Transitional Pla smoid

M = . 64 Co0 1080

po/p 0 z232 a =3.11

TOTo=45 Z'f/InA = 0.16

= 1.5 K =0.5

STD 9-3052



[
which effectively switches on a constant conductivity a0 within the plasmoid and

switches the conductivity off outside the zone in which the plasmoid exists. The

dynamics of the interaction are exhibited in Figs. 3-4 and 3-5. When the

plasmoid shock front encounters the magnetic field, it is both reflected and

transmitted. The reflected shock I collides with the contact surface and initiates

a fast reflected shock II and a slow reflected shock. The fast reflected shock II

reestablishes high velocity flow through the plasmoid and reencounters the

transmitted shock front which has been decelerated. During this period of

strong wave dynamics the current distribution within the plasmoid is strongly

affected (Fig. 3-5). The current is diminished to very small values during

the period of plasmoid deceleration behind the reflected shock I, and the

returns back to enhanced levels after passage of the fast reflected shock II.

The low magnetic Reynolds number of the plasmoid allows the current to

diffuse nearly uniformly throughout its breadth.

3.4 Interaction at High Magnetic Reynolds Number

We next consider the behavior of a uniform conductivity plasmoid

in the high magnetic Reynolds number regime. For this case the incident

plasmoid has an interaction parameter I = 20 as in the previous illustration

but a magnetic Reynolds number Rm 5. Correspondingly, the interaction

number S' has the reduced value S' = 4. The full conditions for this flow

are given in Table LI. The encounter of this plasmoid with the magnetic

field is similar to that of Part III. The features peculiar to the higher

Reynolds number are best perceived in the curr,nt distribution of Fig. 3-7

which is more nonuniform compared to that of Fig. 3-8. When the

current levels rise behind the reflected shock II, they do so by directly

following the shock until it merges with the transmitted front. The current

26
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maximum then remains at the shock front of the plasmoid. As a result o.

decelerating Lorentz forces concentrated immediately behind the shock

front, the shock front is slowed and the overall breadth of the plasmoid

is decreased as it progresses through the magnetic field. This is in

contrast to the plasmoid dynamics of Parts 3.3 and 3.5.

3.5 Transitional Plasmoids

We now turn to consideration of plasmoid behavior with a

coupled electrical conductivity model. In contrast to the previous

illustrations in which the conductivity is spatially uniform within the high

temperat.'re plasmoid and vanishes outside, we consider a conductivity

which is appropriately coupled to the thermodynamic state of the gas.

As a result, local regions within the plasmoid can be rendered more

conductive by the self Joule heating of the plasmoid. With the electrical

conductivity strongly coupled to the Joule dissipation, a plasmoid in the

low I, low Rm range can evolve into the large I, large R range as it

progresses through the magnetic field and experiences further Joule

heating. We term such flows "transitional" plasmoids.

We consider a conductivity function of the form

-I -I -1•

en ei

In the above T en is an electrical conductivity of a neutral species back-

ground and Trei is the Coulomb conductivity. We use as a summary

representation of these two contributions the forms

n

~en 0( T)
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I
-2 3/

- 1ei 52 Zff T3//nA

where Z eff is the average effective ionic charge and TOT0,InA, n>0 are

parameters for a given gas.

The conductivity function Eqs. (63)-(64) is dominated by the

partially ionized conductivity a en at low temperature and goes over to the

Coulomb (fully-ionized) conductivity at high temperature. This conductivity

function has the property 8a/aT - 0 over the entire range of temperature.

Since there are no thermal energy loss mechanisms (which would be

principally radiative) included in the model, the plasmoid is unconditionally

electrothermally unstable [11], [i]. This convective instability is simply a

growth of temperature nonuniformities within the plasmoid due to intensifying

Joule heating resulting from growing electrical conductivity.

The interaction of a representative transitional plasmoid is shown in

Figs. 3-8 to 3-10. This plasmoid has interaction parameters I= i, S= I and

magnetic Reynolds number Rm = I just before it enters the magnetic field.

The complete conditions for this flow are given in Table III. It should be

noted that the interaction at entry into the magnetic field is considerably

smaller than the interaction described in Parts 3.3 and 3.4. The plasmoid

progresses into the field where it begins to self-heat and decelerate. The

modest interaction at plasmoid entry to the magnetic field does not create

distinct reflected waves, but rather a strong and continuous deceleration.

Magnetic Reynolds number and interaction parameter grow significantly as

the plasma is heated. At time t = 2. 6, the magnetic Reynolds number is
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in excess of 10 and the current has progressively become sheet-like. It

should be noted that the current maxima no longer follow immediately

behind the transmitted shock front. Rather, the current concentrates in

the electrothermally heated zone which is then convected at the local fluid

speed rather than radiated at the shock front speed. This decelerating

electrothermal instability is then swept up by collision with the waves

initiated by the arrival of the contact surface at the magietic field inlet.

A feature of note is the development of reversed current flow in the up-

stream portion of the current sheet due to the sharply diminished magnetic

field behind the current sheet at large R
m"

3.6 Summary Remarks

In this study we have illustrated significant purely magnetogas-

dynamic phenomena which occur when a hypervelocity pulse of plasma

("plasmoid") encounters an applied magnetic field under strong interaction

conditions. With uniform electrical conductivity within the plasmoid (and

vanishing electrical conductivity Outside), reflection and transmission of

the plasmoid shock front are possible coupled with strongly nonuniform

current evolution in time. Such plasmoids with large magnetic Reynolds

numbers have current distributions (and decelerating Lorentz forces)

concentrated immediately behind the shock front. As a result of shock

front deceleration, these plasmoids diminish in breadth as they proceed

through the magnetic field. With electrical conductivity within the plasmoid

coupled to its thermodynamic state, the plasmoid is electrothermally un-

stable and creates its own, evolving region of enhanced electrical conductance

which carries most of the current and is convected at the fluid speed within
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the plasmoid. The shock front becomes increasingly free of current and

runs progressively farther ahead of the unstable current structure embedded

in the plasmoid interior.

Nonideal phenomena such as viscous wall layers, kinetic-

relaxation effects behind the shock front, and thermal radiation losses

can play important roles in these strong interaction flows.. The basic

structure of the magnetohydrodynamic interaction itself, however, is a

prerequisite to the description and understanding of these additional

modifying effects.
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*4. CURRENT AND MAGNETIC FIELDS IN TWO-DIMENSIONAL

L HIGH MAGNETIC REYNOLDS NUMBER FLOWS WITH NONUNIFORM
VELOCITY AND ELECTRICAL CONDUCTIVITY

4. t Channel and Applied Magnetic Field Configuration

We now consider some illustrative flows in which the fluid

distribution of velocity and electrical conductivity are specified as

functions of space and the induced magnetic fields and the plasma

currents are to be determined. Three general classes of flow will be

examined.

(a) Uniform velocity and conductivity distributions

(b) Nonuniform velocity and conductivity distributions resulting
from an hypothesized oblique shock system within the MHD
generator duct

(c) Nonuniform velocity and conductivity distributions resulting
from supersonic boundary layers on the walls of the M-D
generator duct.

All flows exist within the duct geometry and applied magnetic

field distribution shown in Figs. 4-1 through 4-10 in which the generator

electrode length is equal to the duct height. The magnetic field is given

by

B¢'xB°' I0 1IL

I +exip(-aL)-ex- a (x+ L/2) -exD[ a(x- L/2) I e<

[l-exp(-aL/2)]Z ,

where B (0 ) is the maximum applied field. The values selected arem
L = 4h and a = 2/h.
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Since these calculations decouple the electricity from the fluid

behavior (weak or vanishing interaction) only the magnetic Reynolds

number, Rm, is a relevant electrical parameter. All cases include con-

ditions for a magnetic Reynolds number Rm - i which is the range of interest.

4.2 Two-Dimensional Electrical Description

Let us now consider the forms of Eq. (58) appropriate to

conduction in the plane perpendicular to an applied magnetic field B(0)

Let the z axis be aligned with the applied field B(0) and let x, y be the

coordinates defining the plane of conduction. The current vector then

becomes J = (J ,J ), the magnetic vector becomes B = B(OO,B), and

the velocity U = U(Ux U y ,0), with Eq.(0) caking the form

S8 a(i) M= -= -.B = - --B (66)

The induction equation (58) is then

%UB +-~(UJ B"' R_ ++

Sx ay y a a2 a
a~~~a~ 7-. i8 ( UTYB() Bo (67)

The boundary conditions appropriate to Eq. (67) are that on

insulating boundaries,

(M constant (68)

while on conductors

(69)

an

where n is the normal coordinate to the conductor surface.
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At steady-state the electric field is derivable from a potential i:

E = _N (70)

Given the induced fields, M, the potential distribution 0(x) is

x
(X) = +x + Bx& d s (71)

m

xx

where f d s is the line integral along any contour from x 0 to x.

x

4.3 Uniform Velocity and Electrical Conductivity

4.3. 1 Load with Point Electrode

If the flow discussed in 4.3. 1 is suggested with point electrodes

and a load current per unit depth I is passed through the circuit, the

field distribution shown in Fig. 4-f results. These results for BM/B(O)

are for a current I/0 i B ( 0 ) = 0.25 and a Reynolds number RM = 0.

The convection of the magnetic field down stream by the fluid is con-

siderable and the eddy current cells at the magnetic field edge are as

significant as the generator current. The result of Gill [ 13] is con-

sistent with this computation.

4.3.2 Load with Finite Electrode

If the basic situation above is supplied with finite electrodes,

the upstream eddy current cells couple its current into the generator

circuit as shown in Fig. 4-2. If the generator current is increased to

I= 1, the result is shown in Fig. 4-3.
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4.4 Nonuniform Velocity and Condlictivity Distributions Resulting

from a Shock System

We now consider nonuniformities in electrical conductivity and

velocity resulting from an hypothesized oblique shock system. We

consider discontinuous distribution across the shock with ( )l denoting

the upstream side of the shock and ( )2 denoting the downstream side.

The magnetic Reynolds number based upon upstream conditions is RM0= 10
M0

for all cases. The current is I = I for all cases.

4.4.1 Shock in front of Electrodes

When the shock is in front of the electrodes, the induced field

distribution, shown in Figs. 4-4 through 4-6 result. In Fig. 4-4 there

is a conductivity group of 3 and no velocity jump. In Fig. 4-5 the

conductivity jump is 10 with no velocity jump. In Fig. 4-6, the con-

ductivity jump is 10 and there is a velocity jump of 1/2.

4.4.2 Shock in Channel Center

In Fig. 4-7, the conductivity jump of 10 is shown with the

shock system located in the channel center. With the shock further

downstream, the front eddy cell is less free to couple into the electrodes

and generator circuit.

4.4.3 Shock at Upstream Edze of Mamnetic Field

When the shock is moved upstream to the upstream edge of

the magnetic field, the electrodes strongly couple the upstream eddy cell.

4.5 Nonuniform Velocity and Conductivity Distributions Resulting

from SuDersonic Boundary Layers on the Walls of the MHD Generator

Duct

4.5. 1 Flow Structure for Electrical Interaction

The flow field has been calculated as that resulting from a

reservoir which feeds the duct with Argon at an inlet velocity of 10 km/sec,
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an internal energy of 37 MJ/kg, a pressure of 10 k bar, and a nominal

electrical conductivity of 25, 000 mho/m at the duct inlet. The resulting

turbulent boundary layer interaction is considerable as the flow proceeds

down the duct.

The generator electrodes are located at 0.6 m downstream

from the duct entry from the driver. At the station 10 cm upstream

from the generator inlet (x = 0.50 m) the conditions of the flow are

Velocity at duct centerline 9612 m/sec

Temperature at duct centerline 36,800 K

Mach number 3.14

Boundary layer thickness 5.5 mm

At the center of the generator section, (x = 0.60 m) these values are

Velocity at duct centerline 9520 m/sec

Temperature at duct centerline 36,930 K

Mach number 3.11

Boundary layer thickness 6. 5 mm

At the exit of the duct, (x = 0.70 m) these values are

Velocity at duct centerline 9430 m/sec

Temperature at duct centerline 36,970 K
Mach number 3.07

Boundary layer thickness 7.5 mrn

This distribution of nonuniform velocity and temperature in x and y (with

corresponding density and conductivity nonuniformity) resulting from the

boundary layers is used as the basis for the electrical calculations

utilizing Eq. (67). The nondimensionalized values are based upon the

velocity and conductivity at the duct inlet (x = 0). The Reynolds number

is based upon the channel height, h and has the value 7. 1.
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4.5.2 Electrical Conduction at Vanishing Magnetic Reynolds Number

We first exhibit the nonuniform electrical conduction in the channel

at low magnetic Reynolds number, RM = 0.01. The total generator

current per unit depth, I, has the value 0.01.

The induced magnetic field, B nondimensionalized on the

maximum value of the applied field is shown in Fig. 4-9 corresponding

to the current I. It can be seen there is negligible convection of the

current distribution; the current spreads out to fill the central portion

of the channel. The principal effects of the electrical nonuniformities

are the voltage drops through the cool boundary layers and the fringing

of the current at the electrode edges.

4.5.3 Electrical Conduction at High Magnetic Reynolds Number

When the magnetic Reynolds number is R m = 7.13 the resulting

induced magnetic field,B , is shown in Fig. 4-10. For the case of

I = i it can be seen that the generator current is driven downstream in

the usual fashion, the bulk of the power actually being produced some-

what downstream of the electrodes. Because of the cool, poorly con-

ducting boundary layers, the eddy-current cells at the magnet edges do

not couple into the generator circuit as they do in the cases of Figs. 4-3

through 4-8 which do not include boundary layer effects.
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